Nanostructured Materials Machine Learning Basics

Attila Cangi

Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf

a.cangi@hzdr.de

June 17, 2025

Lecture Schedule

Teaching team (Shirong/Ebru/Chenchen/Attila)					
Lecture No.	Module	Lecture Topic Date (Tue.)		Lecturer	
1	M1: Introduction	General Introduction	08.04	Dr. Shirong Huang/Dr. Ebru Cihan	
2	M2: Fabrication and characterization	Nanofabrication: Top-down/Bottom-up approaches	15.04	Dr. Chenchen Wang	
3	M2: Fabrication and characterization	Imaging/characterization techniques: Electron microscopy based techniques	22.04	Dr. Ebru Cihan	
4	M2: Fabrication and characterization	Scanning probe microscopy (SPM) 1: Scanning tunneling microscopy (STM)	29.04	Dr. Ebru Cihan	
5	M2: Fabrication and characterization	Scanning probe microscopy (SPM) 2: Atomic force microscopy (AFM)	06.05	Dr. Ebru Cihan	
6	M3: Low-d materials and application	Carbon Nanostructures	13.05	Dr. Shirong Huang	
7	M3:Low-d materials and application	Introduction to low-dimensional materials (LDMs)	20.05	Dr. Shirong Huang	
8	M3:Low-d materials and application	Invited talk: Nanostructured materials-based Biosensors	27.05	Dr. Shirong Huang, Prof. Anthony Guiseppi-Elie	
9	M3:Low-d materials and application	Nanostructured materials-based Gas sensors	03.06	Dr. Shirong Huang	
10	M3:Low-d materials and application	Machine Learning Basics	17.06	Dr. Attila Cangi	
11	M3:Low-d materials and application	Artificial Neural Networks	24.06	Dr. Attila Cangi	
12	M3:Low-d materials and application	Biomimetic electronic noses (e-noses): Al-powered Sensors	01.07	Dr. Shirong Huang	
13	M3:Low-d materials and application	Machine learning for molecule sensing	08.07	Dr. Shirong Huang, Prof. Cuniberti	
14	/	Exam day	15.07	Dr. Shirong Huang	

- Exercise class: Tomorrow, June 18, 13:00 14:30 (MOL/213/H)
- Q&A session on Scientific Project "AI-Driven Prediction of Material Properties"

Why ML for Materials

From AI \rightarrow ML

Core Vocabulary

Supervised, Unsupervised, Reinforcement Learning

Regression vs. Classification

Loss Function

Linear Regression

Model Evaluation

Under- & Over-fitting

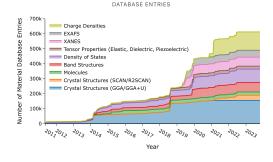
Key Takeaways

The Data Flood in Materials Science

- High-throughput calculations (first-principles, molecular dynamics, etc.), combinatorial experiments, and open databases have increased significantly
- Manual analysis or brute-force simulation cannot keep pace
- ► Hidden patterns = discovery opportunities → need Machine Learning

The Data Flood in Materials Science

- High-throughput calculations (first-principles, molecular dynamics, etc.), combinatorial experiments, and open databases have increased significantly
- Manual analysis or brute-force simulation cannot keep pace
- ► Hidden patterns = discovery opportunities → need Machine Learning



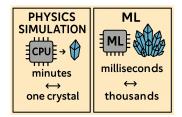
Traditional Modeling vs Machine Learning

Physics-based simulation

 DFT / MD deliver high fidelity but at high cost: O(minutes to hours) per structure.

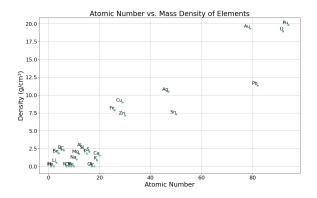
ML surrogate model

- Train once, then predict new materials in O(milliseconds).
- Enables rapid screening and inverse design.



Can We Learn the Mass Density from the Atomic Number?

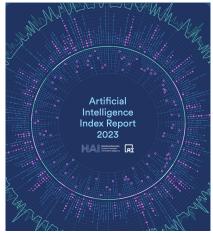
- > Toy example: atomic number Z vs mass density relationship is non-linear
- Question: "Could an algorithm automatically learn this trend... and then far more complex ones like band gap or elasticity?"



To answer, we need ML basics: vocabulary, models, and evaluation.

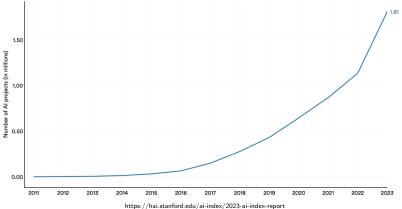
 $\stackrel{\mathsf{Nanostructured Materials}}{\vdash}\mathsf{From AI} \to \mathsf{ML}$

What is AI?



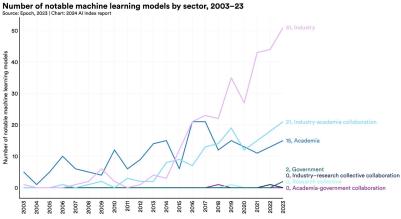
https://hai.stanford.edu/ai-index/2023-ai-index-report

Number of GitHub AI projects, 2011–23 Source: GitHub, 2023 | Chart: 2024 AI Index report



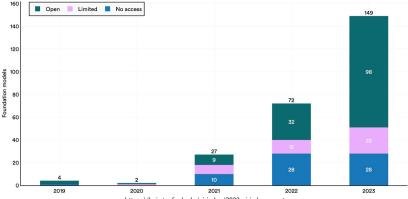
Number of AI publications in the world, 2010–22 Source: Center for Security and Emerging Technology, 2023 | Chart: 2024 AI Index report 242.29 Number of AI publications (in thousands)

https://hai.stanford.edu/ai-index/2023-ai-index-report

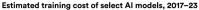


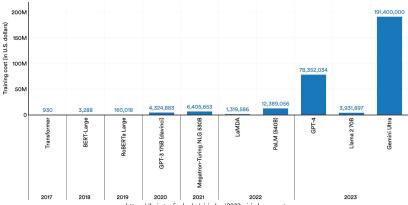
https://hai.stanford.edu/ai-index/2023-ai-index-report

Foundation models by access type, 2019–23 Source: Bommasani et al., 2023 | Chart: 2024 Al Index report



https://hai.stanford.edu/ai-index/2023-ai-index-report



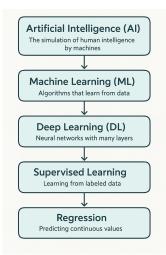


Source: Epoch, 2023 | Chart: 2024 Al Index report

https://hai.stanford.edu/ai-index/2023-ai-index-report

Zoom-Out : What Is AI?

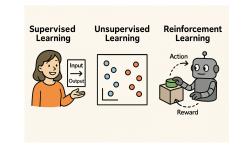
- Artificial Intelligence (AI) umbrella term for algorithms that perform tasks normally requiring human intelligence (planning, perception, reasoning)
- Machine Learning (ML) subset of Al; systems that learn patterns from data instead of being hard-coded
- Deep Learning (DL) subset of ML; models based on multi-layer neural networks



Anatomy of Machine Learning

Three core learning paradigms:

- 1. **Supervised** learn mapping from inputs *x* to labels *y*
- Unsupervised discover structure in unlabeled data
- 3. Reinforcement learn via trial-and-error rewards
- Each paradigm branches into many *methods* (linear regression, k-means, Q-learning)
- Common thread: define a goal (loss or reward), optimize it



Where the Paradigms Help in Materials Science

Paradigm	Example materials tasks	
Supervised	Predict band gap, elas- tic modulus, phase label	Supervised Unsupervised Reinforcement Learning Learning Learning
Unsupervised	Cluster high-entropy al- loys; reduce descrip- tor space with PCA; anomaly detection in synthesis logs	Action O Output
Reinforcement	Active-learning loop in self-driving lab; Bayesian optimization of alloy composition	

Property prediction dominates our immediate needs, so we now focus on the **supervised** learning paradigm.

Anatomy of a Dataset

- A dataset = collection of samples (rows)
- Each sample records one material/formula
- Many columns make up the features (descriptors)
- One column is label (target property)

D df.	df_12_struct.head()							
÷.	structure	log10(K_VRH)	density	vpa	packing fraction	mean ordering parameter shell 1	mean ordering parameter shell 2	mean ordering parameter shell 3
0	[[1.01010394 3.03031182 0.] Li, [3.030	1.477121	1.925667	17.820044	0.774182	0.411544	0.152153	0.102496
1	[[2.32540495 2.38773782 3.89634095] AJ, [0. 0	1.963788	3.675852	11.659282	0.258595	0.421807	0.181921	0.146386
2	[[0. 0. 0.] Fe, [1.76869807 1.76869807 0	2.307496	8.700535	11.066011	0.958160	0.333333	0.030303	0.014245
3	[[4.91140724 0.82858616 4.10907037] F. [3.1732	1.301030	5.266007	20.142174	0.886432	0.476271	0.230530	0.181574
4	[[4.68532551 4.68532749 4.68533345] Sc, [1.561	2.235528	8.631463	15.237572	0.734461	0.551982	0.241225	0.132669

Example snippet: structure, mass density, ordering parameters, packing fraction, bulk modulus

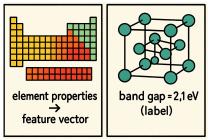
Features & Labels in Materials Science

Features (Descriptors)

- Numerical representation of composition/structure
- Examples: average electronegativity, packing fraction, atomic structure descriptor, atomic-site symmetry

Labels (Targets)

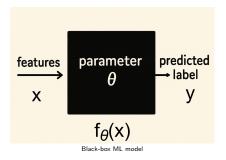
 Property we wish to predict:
Continuous → band gap [eV], formation energy [eV/atom]
Categorical → metal vs insulator, phase (hcp/fcc)



Descriptor (feature) vector feeds model; label guides learning

Model, Parameters & Loss

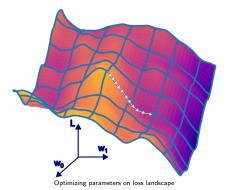
- ► Model $\hat{y} = f_{\theta}(x)$ mathematical function mapping features to label
- Parameters θ weights the algorithm must learn
- ▶ Loss $L(y, \hat{y})$ quantifies "how wrong" predictions are: Regression → MSE Classification → cross-entropy
- Learning = find $\theta^* = \arg \min_{\theta} \sum L(y, \hat{y})$



Feature scaling: Standardize descriptors so weight magnitudes are comparable

Model, Parameters & Loss

- Model ŷ = f_θ(x) mathematical function mapping features to label
- Parameters θ weights the algorithm must learn
- ▶ Loss $L(y, \hat{y})$ quantifies "how wrong" predictions are: Regression → MSE Classification → cross-entropy
- Learning = find $\theta^* = \arg \min_{\theta} \sum L(y, \hat{y})$



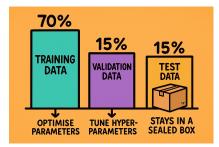
Feature scaling: Standardize descriptors so weight magnitudes are comparable

Train · Validation · Test Split

- Training set model sees labels; fits weights
- Validation set monitors generalization; tunes hyper-parameters, triggers early stopping
- Test set sealed until final evaluation; unbiased estimate of real-world performance
- Typical split: 70 / 15 / 15 % (flexible)

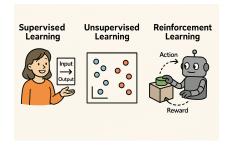
Golden Rule

Never use the test set during model development.



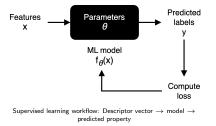
Three Ways to Learn from Data

- ► Supervised learning : learn mapping x → y from labelled data
- Unsupervised learning : find structure/patterns in unlabelled data
- Reinforcement learning : learn a policy by maximizing cumulative reward through interaction
- Common pattern: define objective ⇒ optimize it



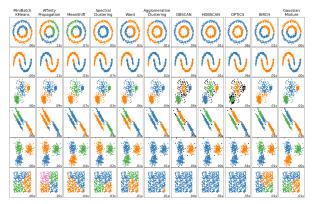
Supervised Learning in Materials Science

- Inputs: composition / structure descriptors
- Targets: continuous properties (band gap, elastic modulus) or categories (metal vs insulator)
- Typical algorithms: linear & kernel regression, random forests, neural networks
- Enables high-throughput property prediction and rapid screening



Unsupervised Learning - When Labels Are Scarce

- Goal: discover latent structure.
- Tasks: cluster unknown alloys, reduce high-dimensional descriptor space via PCA, anomaly detection in synthesis logs.
- Methods: k-means, DBSCAN, autoencoders, PCA, t-SNE.



Reinforcement Learning - When Labels Are Scarce

- Goal: choose actions to maximize reward.
- Tasks: active-learning loop in self-driving lab, Bayesian optimization of composition, autonomous furnace tuning.
- Methods: Q-learning, policy gradients, GP-based Bayesian optimization.

Which Paradigm Fits Your Problem?

Do you have labels?

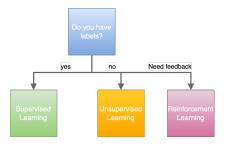
- Yes ⇒ Supervised.
- $\blacktriangleright \text{ No} \Rightarrow \textbf{Unsupervised}.$
- Need sequential decisions and real-time feedback? ⇒ Reinforcement.

Example walk-through:

- ▶ Predict elastic modulus → Supervised
- Cluster 10 000 unknown materials into categories (metal, insulator, oxides, etc.)
 Unsupervised
- \blacktriangleright Decide next sample or processing step in autonomous lab \rightarrow RL

Take-away

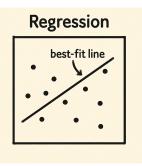
We'll focus on supervised learning next, since it underpins most materials-property prediction tasks.



Two Supervised Question Types

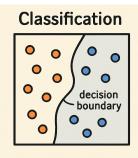
Regression

- Predict a continuous value
- Example: band gap (eV), elastic modulus (GPa)
- Loss: MSE / MAE



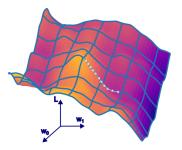
Classification

- Predict a category label
- Example: metal vs insulator, crystal system (hcp/fcc)
- Loss: cross—entropy



Why We Need a Loss

- Model outputs a prediction ŷ; reality provides the true value y
- We need a numerical measure of "how wrong" each prediction is
- Loss function L(y, ŷ) quantifies this error
- Training = adjust parameters to minimize $\sum L(y, \hat{y})$



Mean–Squared Error (MSE)

Standard loss for regression tasks

• Formula: MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Squared term penalizes large errors more strongly
- Differentiable \Rightarrow gradient-based optimization works smoothly

Loss Functions Overview

• Mean–Squared Error (MSE) $MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$ - Squared term penalizes large errors more strongly

- ► Mean Absolute Error (MAE) also for regression and more robust to outliers MAE = ¹/_N ∑^N_{i=1} |y_i − ŷ_i|
- ► Root Mean–Squared Error (RMSE) RMSE = $\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$
- ► **Binary Cross Entropy** for classification BCE = $\frac{1}{N} \sum_{i=1}^{N} [y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i)]$
- Choice of loss depends on task and distribution of targets

Key Take-away

Pick a loss that matches your prediction type; for regression we'll typically use MSE.

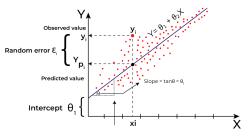
Linear Model & Assumptions

- Linear regression is a type of supervised machine-learning algorithm
- Maps the data points with most optimized linear functions
- Hypothesis: $\hat{y} = \theta_1 + \theta_2 x$

Assumptions:

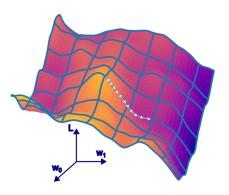
- Relationship between input and output is linear
- Errors are independent and identically distributed

• Goal: find θ_1, θ_2 that minimize MSE.



Loss Function in Linear Regression

- Recall MSE loss $L = \frac{1}{N} \sum_{i}^{N} (\hat{y}_{i} - y_{i})^{2}$
- Calculates the average of the squared errors between the predicted values and the actual values
- Purpose is to determine optimal values θ_1, θ_2 for the model $\hat{y} = \theta_1 + \theta_2 x$
- How do we find θ_1, θ_2 ?
- This is done by minimizing the loss function, for example by gradient descent



Visualizing MSE: Geometric Intuition

- Each residual $r_i = y_i \hat{y}_i$ shown as vertical bar
- Squaring = shaded area of each residual square
- Best-fit line minimizes total shaded area

Finding Model Parameters (Closed-form vs. Gradient Descent)

Closed-form (Normal equation):

 $\boldsymbol{\theta} = (\mathbf{x}^{\top}\mathbf{x})^{-1}\,\mathbf{x}^{\top}\mathbf{y}$

- Good for small to moderate dimensionality of features
- Requires matrix inversion

Gradient Descent (iterative):

- $\boldsymbol{\theta} = \boldsymbol{\theta} \boldsymbol{\alpha} \, \cdot \,$ "gradient update"
 - Scales to large datasets; underlies neural networks
 - Converges if learning rate α chosen properly

Let's compute the gradient updates specifically for a simple example.

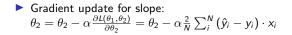
Computing the Gradient Update

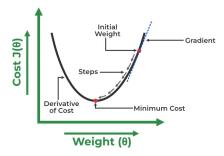
- Consider a simple linear regression model: $\hat{y} = \theta_1 + \theta_2 x$
- Let's compute the gradient update.

Linear repression: Gradient descent	
Deriving the gradient update	
0 = 0 - x "gradient update"	
÷ ∂- × 4.0	
Consider a simple regression model	
ý = Q + Q ×	
This means we used to calculate them to yyakile.	We obtain the Collewing gradient updates:
On and Oz, so	· · · · · · · · · · · · · · · · · · ·
$Q_1 = Q_1 - K LQ_1 = Q_1 - K \frac{\partial L(Q_1, Q_2)}{\partial Q_2}$	$\Theta_{q} = \Theta_{q} - \kappa \frac{2}{N} \sum_{i=q}^{N} \left(\frac{\varphi_{i}}{\varphi_{i}} - \varphi_{i} \right)$
	· · · · · · · · · · · · · · · · · · ·
$\theta_2 = \theta_2 - \kappa \Delta \theta_2 = \theta_2 - \kappa \frac{\partial \mathcal{L}(\theta_1, \theta_2)}{\partial \theta_2}$	$\Theta_{2} = \Theta_{2} - \times \frac{2}{N} \sum_{i=1}^{N} (\hat{\gamma}_{i} - \gamma_{i}) \times$
	N. 194
1 × 1 × 1 × 1 × 1	
Recall that $L(\theta_1, \theta_2) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$	
(USE Lass)	
For Q, we than obtain	
OL DINIA 12	
$\frac{\partial \mathcal{L}}{\partial \sigma_n} = \frac{\partial}{\partial \sigma_n} \frac{1}{n} \sum_{i=1}^{n} (\hat{\gamma}_i - \gamma_i)^2$	
· · · · · · · · · · · · · · · · · · ·	
$= \frac{4}{\mu} \sum_{i=1}^{M} 2(\hat{\gamma}_i - \gamma_i) \frac{2}{2\theta} (\hat{\gamma}_i - \gamma_i)$	
$V \stackrel{\mathcal{L}_1}{:= 1} \stackrel{\mathcal{L}_2}{\to} \left(\begin{array}{c} \gamma_1 & \gamma_1 \\ \overline{\partial \Theta_1} \end{array} \right) \stackrel{\mathcal{L}_1}{\to} \left(\begin{array}{c} \gamma_1 & \gamma_1 \\ \overline{\partial \Theta_1} \end{array} \right)$	
$= \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\hat{\varphi}_{i} - \gamma_{i}) \stackrel{\partial}{\rightarrow} (O_{4} + \theta_{2} \times -\gamma_{i})$	
N (=7	
1 5 201 - 1	
$=\frac{1}{N}\sum_{i=1}^{N}2(\hat{\gamma}_{i}-\gamma_{i})$	
And Car θ_2 , we obtain	
$\frac{\partial \mathcal{L}}{\partial \theta_2} = \dots = \frac{1}{\mathcal{V}} \sum_{i=q}^{\mathcal{N}} 2 \begin{pmatrix} \theta_1 \cdot \eta_i \end{pmatrix} \frac{\partial}{\partial \theta_2} \begin{pmatrix} \theta_1 + \theta_2 \cdot \mathbf{x} - \mathbf{y}_i \end{pmatrix}$	
4 <u>N</u> ,,	
$= \frac{4}{N} \sum_{i=1}^{N} 2(\hat{\gamma}_i - \gamma_i) \times$	

Computing the Gradient Update

- We derived the following gradient updates:
- Gradient update for intercept: $\theta_1 = \theta_1 - \alpha \frac{\partial L(\theta_1, \theta_2)}{\partial \theta_1} = \theta_1 - \alpha \frac{2}{N} \sum_i^N (\hat{y}_i - y_i)$





Beyond Linear Regression

Simple Linear Regression $y = b_0 + b_1 x_1$ Multiple Linear Regression $y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$ Polynomial Linear Regression $y = b_0 + b_1 x_1 + b_2 x_1^2 + \dots + b_n x_1^n$

Regression Metrics

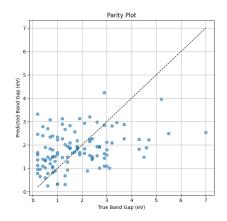
Metric	Formula	Intuition
MSE	$rac{1}{N}\sum_{i}^{N}(\hat{y}_{i}-y_{i})^{2}$	Penalizes large errors (squared)
MAE	$\frac{1}{N}\sum_{i}^{N} \hat{y}_{i}-y_{i}k $	More robust to outliers
R^2	$1-{\rm SS}_{\it res}/{\rm SS}_{\it tot}$	Fraction of variance explained (1=perfect)

with $SS_{res} = \sum_{i}^{N} (\hat{y}_{i} - y_{i})^{2}$ $SS_{tot} = \sum_{i}^{N} (\bar{y} - y_{i})^{2}$

- Always pair R^2 with an absolute error metric.
- Choose metric relevant to scientific tolerances.

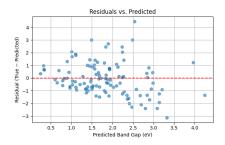
Predicted vs Actual Plot (Parity Plot)

- Quick visual sanity check: perfect model lies on 45° line.
- Systematic bias shows as slope $\neq 1$.
- Colour/size points by uncertainty or density.



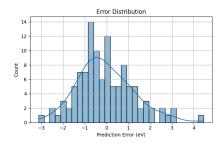
Residual Analysis

- Plot residual $y \hat{y}$ vs predicted \hat{y} .
- Patterns reveal issues:
 - Funnel shape \Rightarrow non-constant variance.
 - Curved trend \Rightarrow missing non-linear term.
- Suggest remedies: log-transform target, add polynomial features, or change model.



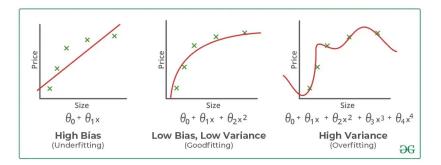
Residual Analysis

- Plot residual $y \hat{y}$ vs predicted \hat{y} .
- Patterns reveal issues:
 - Funnel shape \Rightarrow non-constant variance.
 - Curved trend \Rightarrow missing non-linear term.
- Suggest remedies: log-transform target, add polynomial features, or change model.



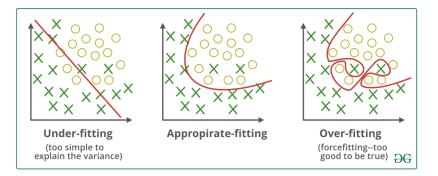
Model Capacity Spectrum

- **Under-fit (high bias)**: model too simple, misses trend.
- Good fit: captures true signal, generalizes well.
- Over-fit (high variance): model too complex, memorizes noise.



Model Capacity Spectrum

- **Under-fit (high bias)**: model too simple, misses trend.
- **Good fit**: captures true signal, generalizes well.
- Over-fit (high variance): model too complex, memorizes noise.



Avoiding Overfitting: Lasso and Ridge Regularisation

Lasso (L1)

- Loss: $L = \frac{1}{N} \sum_{i}^{N} (\hat{y}_i y_i)^2 + \lambda \sum_{i}^{N} |\theta_i|.$
- Lasso encourages sparsity by bringing some coefficients to exactly zero.
- Can set some weights *exactly* zero \Rightarrow implicit feature selection.

Ridge (L2)

- Loss: $L = \frac{1}{N} \sum_{i}^{N} (\hat{y}_i y_i)^2 + \lambda \sum_{i}^{N} \theta_i^2$
- Shrinks all weights smoothly toward zero.
- Encourages the model to have smaller and more balanced weights.

Elastic net (L1+L2)

- ► Loss: $L = \frac{1}{N} \sum_{i}^{N} (\hat{y}_i y_i)^2 + \lambda \sum_{i}^{N} |\theta_i| + \lambda \sum_{i}^{N} \theta_i^2$
- Combines both lasso and ridge regularization.

Need to optimize additional hyperparameter λ .

One Slide Summary

- Core vocabulary: dataset, feature, label, model, loss
- ML paradigms: supervised, unsupervised, reinforcement
- Regression vs. classification; MSE loss; linear-regression baseline
- Model evaluation: train/val/test, metrics, residuals
- Diagnose under-/over-fit; Ridge & Lasso for regularization

