
1/46

Nanostructured Materials

Nanostructured Materials
Machine Learning Basics

Attila Cangi

Center for Advanced Systems Understanding,
Helmholtz-Zentrum Dresden-Rossendorf

a.cangi@hzdr.de

June 17, 2025



2/46

Nanostructured Materials

Where We Are in the Semester

Lecture Schedule

▶ Exercise class: Tomorrow, June 18, 13:00 - 14:30 (MOL/213/H)

▶ Q&A session on Scientific Project “AI-Driven Prediction of Material
Properties”
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Why ML for Materials

The Data Flood in Materials Science

▶ High-throughput calculations
(first-principles, molecular
dynamics, etc.), combinatorial
experiments, and open databases
have increased significantly

▶ Manual analysis or brute-force
simulation cannot keep pace

▶ Hidden patterns = discovery
opportunities → need Machine
Learning
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Why ML for Materials

Traditional Modeling vs Machine Learning

Physics-based simulation

▶ DFT / MD deliver high fidelity but at
high cost: O(minutes to hours) per
structure.

ML surrogate model

▶ Train once, then predict new materials
in O(milliseconds).

▶ Enables rapid screening and inverse
design.
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Why ML for Materials

Can We Learn the Mass Density from the Atomic Number?
▶ Toy example: atomic number Z vs mass density – relationship is non-linear

▶ Question: “Could an algorithm automatically learn this trend... and then
far more complex ones like band gap or elasticity?”

To answer, we need ML basics: vocabulary, models, and evaluation.
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From AI → ML

What is AI?
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From AI → ML

Some trends about AI

https://hai.stanford.edu/ai-index/2023-ai-index-report
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From AI → ML

Zoom-Out : What Is AI?

▶ Artificial Intelligence (AI) – umbrella
term for algorithms that perform tasks
normally requiring human intelligence
(planning, perception, reasoning)

▶ Machine Learning (ML) – subset of
AI; systems that learn patterns from
data instead of being hard-coded

▶ Deep Learning (DL) – subset of ML;
models based on multi-layer neural
networks
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From AI → ML

Anatomy of Machine Learning

▶ Three core learning paradigms:
1. Supervised – learn mapping

from inputs x to labels y
2. Unsupervised – discover

structure in unlabeled data
3. Reinforcement – learn via

trial-and-error rewards

▶ Each paradigm branches into
many methods (linear regression,
k-means, Q-learning)

▶ Common thread: define a goal
(loss or reward), optimize it
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From AI → ML

Where the Paradigms Help in Materials Science

Paradigm Example materials
tasks

Supervised Predict band gap, elas-
tic modulus, phase label

Unsupervised Cluster high-entropy al-
loys; reduce descrip-
tor space with PCA;
anomaly detection in
synthesis logs

Reinforcement Active-learning loop
in self-driving lab;
Bayesian optimization
of alloy composition

Property prediction dominates our immediate needs, so we now focus on
the supervised learning paradigm.
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Core Vocabulary

Anatomy of a Dataset

▶ A dataset = collection of samples (rows)

▶ Each sample records one material/formula

▶ Many columns make up the features (descriptors)

▶ One column is label (target property)

Example snippet: structure, mass density, ordering parameters, packing fraction, bulk modulus
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Core Vocabulary

Features & Labels in Materials Science

Features (Descriptors)

▶ Numerical representation of
composition/structure

▶ Examples: average
electronegativity, packing fraction,
atomic structure descriptor,
atomic-site symmetry

Labels (Targets)

▶ Property we wish to predict:
Continuous → band gap [eV],
formation energy [eV/atom]
Categorical → metal vs insulator,
phase (hcp/fcc)

Descriptor (feature) vector feeds model; label guides learning
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Core Vocabulary

Model, Parameters & Loss

▶ Model ŷ = fθ(x) – mathematical function
mapping features to label

▶ Parameters θ – weights the algorithm
must learn

▶ Loss L(y , ŷ) – quantifies “how wrong”
predictions are:
Regression → MSE
Classification → cross-entropy

▶ Learning = find θ∗ = argminθ
∑

L(y , ŷ) Black-box ML model

Feature scaling: Standardize descriptors so weight magnitudes are comparable
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Feature scaling: Standardize descriptors so weight magnitudes are comparable



22/46

Nanostructured Materials

Core Vocabulary

Train · Validation · Test Split

▶ Training set – model sees labels; fits
weights

▶ Validation set – monitors generalization;
tunes hyper-parameters, triggers early
stopping

▶ Test set – sealed until final evaluation;
unbiased estimate of real-world
performance

▶ Typical split: 70 / 15 / 15 % (flexible)

Golden Rule
Never use the test set during model development.
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Supervised, Unsupervised, Reinforcement Learning

Three Ways to Learn from Data

▶ Supervised learning : learn mapping
x 7→ y from labelled data

▶ Unsupervised learning : find
structure/patterns in unlabelled data

▶ Reinforcement learning : learn a
policy by maximizing cumulative
reward through interaction

▶ Common pattern: define objective ⇒
optimize it
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Supervised, Unsupervised, Reinforcement Learning

Supervised Learning in Materials Science

▶ Inputs: composition / structure descriptors

▶ Targets: continuous properties (band gap,
elastic modulus) or categories (metal vs
insulator)

▶ Typical algorithms: linear & kernel
regression, random forests, neural networks

▶ Enables high-throughput property
prediction and rapid screening

Supervised learning workflow: Descriptor vector → model →
predicted property
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Supervised, Unsupervised, Reinforcement Learning

Unsupervised Learning – When Labels Are Scarce

▶ Goal: discover latent structure.

▶ Tasks: cluster unknown alloys, reduce high-dimensional descriptor space
via PCA, anomaly detection in synthesis logs.

▶ Methods: k-means, DBSCAN, autoencoders, PCA, t-SNE.
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Supervised, Unsupervised, Reinforcement Learning

Reinforcement Learning – When Labels Are Scarce

▶ Goal: choose actions to maximize
reward.

▶ Tasks: active-learning loop in
self-driving lab, Bayesian
optimization of composition,
autonomous furnace tuning.

▶ Methods: Q-learning, policy
gradients, GP-based Bayesian
optimization.
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Supervised, Unsupervised, Reinforcement Learning

Which Paradigm Fits Your Problem?

▶ Do you have labels?
▶ Yes ⇒ Supervised.
▶ No ⇒ Unsupervised.

▶ Need sequential decisions and real-time
feedback? ⇒ Reinforcement.

▶ Example walk-through:
▶ Predict elastic modulus → Supervised
▶ Cluster 10 000 unknown materials into

categories (metal, insulator, oxides, etc.)
→ Unsupervised

▶ Decide next sample or processing step in
autonomous lab → RL

Take-away

We’ll focus on supervised learning next, since it underpins most
materials-property prediction tasks.
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Regression vs. Classification

Two Supervised Question Types

Regression

▶ Predict a continuous value

▶ Example: band gap (eV), elastic
modulus (GPa)

▶ Loss: MSE / MAE

Classification

▶ Predict a category label

▶ Example: metal vs insulator,
crystal system (hcp/fcc)

▶ Loss: cross–entropy
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Loss Function

Why We Need a Loss

▶ Model outputs a prediction ŷ ; reality
provides the true value y

▶ We need a numerical measure of “how
wrong” each prediction is

▶ Loss function L(y , ŷ) quantifies this
error

▶ Training = adjust parameters to
minimize

∑
L(y , ŷ)
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Loss Function

Mean–Squared Error (MSE)

▶ Standard loss for regression tasks

▶ Formula: MSE = 1
N

∑N
i=1(yi − ŷi )

2

▶ Squared term penalizes large errors more strongly

▶ Differentiable ⇒ gradient-based optimization works smoothly
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Loss Function

Loss Functions Overview
▶ Mean–Squared Error (MSE)

MSE = 1
N

∑N
i=1(yi − ŷi )

2 - Squared term penalizes large errors more
strongly

▶ Mean Absolute Error (MAE) – also for regression and more robust to
outliers
MAE = 1

N

∑N
i=1 |yi − ŷi |

▶ Root Mean–Squared Error (RMSE)

RMSE =
√

1
N

∑N
i=1(yi − ŷi )2

▶ Binary Cross Entropy – for classification
BCE = 1

N

∑N
i=1 [yi log ŷi + (1− yi ) log (1− ŷi )]

▶ Choice of loss depends on task and distribution of targets

Key Take-away

Pick a loss that matches your prediction type; for regression we’ll typically use
MSE.
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Linear Regression

Linear Model & Assumptions

▶ Linear regression is a type of
supervised machine-learning algorithm

▶ Maps the data points with most
optimized linear functions

▶ Hypothesis: ŷ = θ1 + θ2x

▶ Assumptions:
▶ Relationship between input and

output is linear
▶ Errors are independent and

identically distributed

▶ Goal: find θ1, θ2 that minimize MSE.
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Linear Regression

Loss Function in Linear Regression

▶ Recall MSE loss
L = 1

N

∑N
i (ŷi − yi )

2

▶ Calculates the average of the squared
errors between the predicted values
and the actual values

▶ Purpose is to determine optimal values
θ1, θ2 for the model ŷ = θ1 + θ2x

▶ How do we find θ1, θ2?

▶ This is done by minimizing the loss
function, for example by gradient
descent
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Linear Regression

Visualizing MSE: Geometric Intuition

▶ Each residual ri = yi − ŷi shown as vertical bar

▶ Squaring = shaded area of each residual square

▶ Best-fit line minimizes total shaded area

Visualization

file:///Users/acangi/My%20Drive/Work/Teaching/Machine%20Learning%20for%20Materials%20Science/Unit%202/Images/Segment%2006%20Visualizing%20Loss%20SSE.gif
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Linear Regression

Finding Model Parameters (Closed-form vs. Gradient Descent)

Closed-form (Normal equation):

θ = (x⊤x)−1 x⊤y

▶ Good for small to moderate dimensionality of features

▶ Requires matrix inversion

Gradient Descent (iterative):

θ = θ − α · “gradient update”

▶ Scales to large datasets; underlies neural networks

▶ Converges if learning rate α chosen properly

Let’s compute the gradient updates specifically for a simple example.
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Linear Regression

Computing the Gradient Update

▶ Consider a simple linear regression model: ŷ = θ1 + θ2x

▶ Let’s compute the gradient update.
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Linear Regression

Computing the Gradient Update
▶ We derived the following gradient updates:

▶ Gradient update for intercept:
θ1 = θ1 − α ∂L(θ1,θ2)

∂θ1
= θ1 − α 2

N

∑N
i (ŷi − yi )

▶ Gradient update for slope:
θ2 = θ2 − α ∂L(θ1,θ2)

∂θ2
= θ2 − α 2

N

∑N
i (ŷi − yi ) · xi
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Linear Regression

Beyond Linear Regression
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Model Evaluation

Regression Metrics

Metric Formula Intuition

MSE 1
N

∑N
i (ŷi − yi )

2 Penalizes large errors (squared)

MAE 1
N

∑N
i |ŷi − yik| More robust to outliers

R2 1− SSres/SStot Fraction of variance explained (1=perfect)

with
SSres =

∑N
i (ŷi − yi )

2

SStot =
∑N

i (ȳ − yi )
2

▶ Always pair R2 with an absolute error metric.

▶ Choose metric relevant to scientific tolerances.
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Model Evaluation

Predicted vs Actual Plot (Parity Plot)

▶ Quick visual sanity check: perfect model lies on 45° line.
▶ Systematic bias shows as slope ̸= 1.

▶ Colour/size points by uncertainty or density.
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Model Evaluation

Residual Analysis

▶ Plot residual y − ŷ vs predicted ŷ .
▶ Patterns reveal issues:

▶ Funnel shape ⇒ non-constant variance.
▶ Curved trend ⇒ missing non-linear term.

▶ Suggest remedies: log-transform target, add polynomial features, or
change model.
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Under- & Over-fitting

Model Capacity Spectrum

▶ Under-fit (high bias): model too simple, misses trend.

▶ Good fit: captures true signal, generalizes well.

▶ Over-fit (high variance): model too complex, memorizes noise.
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Under- & Over-fitting

Avoiding Overfitting: Lasso and Ridge Regularisation

Lasso (L1)

▶ Loss: L = 1
N

∑N
i (ŷi − yi )

2 + λ
∑N

i |θi |.
▶ Lasso encourages sparsity by bringing some coefficients to exactly zero.

▶ Can set some weights exactly zero ⇒ implicit feature selection.

Ridge (L2)

▶ Loss: L = 1
N

∑N
i (ŷi − yi )

2 + λ
∑N

i θ2i
▶ Shrinks all weights smoothly toward zero.

▶ Encourages the model to have smaller and more balanced weights.

Elastic net (L1+L2)

▶ Loss: L = 1
N

∑N
i (ŷi − yi )

2 + λ
∑N

i |θi |+ λ
∑N

i θ2i
▶ Combines both lasso and ridge regularization.

Need to optimize additional hyperparameter λ.
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Key Takeaways

One Slide Summary

▶ Core vocabulary: dataset, feature,
label, model, loss

▶ ML paradigms: supervised,
unsupervised, reinforcement

▶ Regression vs. classification; MSE
loss; linear-regression baseline

▶ Model evaluation: train/val/test,
metrics, residuals

▶ Diagnose under-/over-fit; Ridge
& Lasso for regularization
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