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Nanostructured Materials
Where We Are in the Semester

Lecture Schedule

Teaching team (Shirong/Ebru/Chenchen/Attila)

M General Introduction .04 Dr. Ebru Cihan
ion: Top: Dr. g
iniques: Electron microscopy based techniques X Dr. Ebru Cihan
(SPM) 1: Scanni ling mi (STM) X Dr. Ebru Cihan
2: Atomic force microscopy (AFM] X Or. Ebry Cihan
Carbon X Dr. g Huang
Introduction to low-dimensional materials (LDMs) X Dr. g Huang
Invited talk: d Biosensors X Or. Prof. uiseppi-Elie
nsors X Dr. Shirong Huang
Machine L i X Dr. Attla Cangi
ifici Network 4. Dr. Attla Cangi
1. Dr. Shirong Hua
i 8. Dr. Shirong Huang, Prof. Cuniberti
’ Exam day 5. Dr. Shirong Huang

> Exercise class: Tomorrow, June 18, 13:00 - 14:30 (MOL/213/H)

» Q&A session on Scientific Project “Al-Driven Prediction of Material
Properties”
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LWhy ML for Materials

The Data Flood in Materials Science

CCOC

> ngh'thrOUghPUt calculatlons The Cambridge Crystallographic
(first-principles, molecular Data Centre
dynamics, etc.), combinatorial

experiments, and open databases OQMD %

have increased significantly The Open Quantum
Materials Database

» Manual analysis or brute-force L e
simulation cannot keep pace *
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» Hidden patterns = discovery
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y or Materials
L Why ML for Material

The Data Flood in Materials Science

» High-throughput calculations
(first-principles, molecular
dynamics, etc.), combinatorial
experiments, and open databases
have increased significantly

Number of Material Database Entries

» Manual analysis or brute-force
simulation cannot keep pace
» Hidden patterns = discovery

opportunities — need Machine
Learning
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DATABASE ENTRIES

= Charge Densities
=== EXAFS

= XANES

=== Tensor Properties (Elastic, Dielectric, Piezoelectric)
=== Density of States

=== Band Structures

=== Molecules

=== Crystal Structures (SCAN/R2SCAN)
=== Crystal Structures (GGA/GGA+U)
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L Why ML for Materials

Traditional Modeling vs Machine Learning

Physics-based simulation

» DFT / MD deliver high fidelity but at
high cost: O(minutes to hours) per

PHYSICS ML
structure. SIMULATION
ML
- § | ¥
milliseconds

o
» Train once, then predict new materials one crystal thousands
in O(milliseconds).

ML surrogate model mlnutes

» Enables rapid screening and inverse
design.
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LWhy ML for Materials

Can We Learn the Mass Density from the Atomic Number?

» Toy example: atomic number Z vs mass density — relationship is non-linear

» Question: “Could an algorithm automatically learn this trend... and then
far more complex ones like band gap or elasticity?”

Atomic Number vs. Mass Density of Elements
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To answer, we need ML basics: vocabulary, models, and evaluation.
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L From Al — ML

What is Al?

ChatGPT

Alphafold'3
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L From Al = ML

Some trends about Al

Artificial
Intelligence

Index Report
2023

https://hai.stanford.edu/ai-index/2023-ai-index-report
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L From Al — ML

Some trends about Al

Number of GitHub Al projects, 2011-23
Source: GitHub, 2023 | Chart: 2024 Al Index report
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L From Al = ML

Some trends about Al

Number of Al publications in the world, 2010-22
Source: Center for Security and Emerging Technology, 2023 | Chart: 2024 Al Index report
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L From Al — ML

Some trends about Al

Source:

Number of notable machine learning models
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L From Al = ML

Some trends about Al

datio del

F
Source:

Foundation models
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L From Al — ML

Some trends about Al

Estimated training cost of select Al models, 2017-23
Source: Epoch, 2023 | Chart: 2024 Al Index report
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From Al — ML

Zoom-Out : What Is Al?

> Artificial Intelligence (Al) — umbrella
term for algorithms that perform tasks
normally requiring human intelligence
(planning, perception, reasoning)

» Machine Learning (ML) — subset of
Al; systems that learn patterns from
data instead of being hard-coded

> Deep Learning (DL) — subset of ML;
models based on multi-layer neural
networks

s N
Artificial Intelligence (Al)
The simulation of human intelligence

- by machines )

!

-
Machine Learning (ML)

Algorithms that learn from data

)

Deep Learning (DL)

Neural networks with many layers

1

Supervised Learning
Learning from labeled data

1

Regression

N\

Predicting continuous values
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From Al — ML

Anatomy of Machine Learning

» Three core learning paradigms:
1. Supervised — learn mapping
from inputs x to labels y
2. Unsupervised — discover Supervised Unsupervised  Reinforcement
structure in unlabeled data Learning Learning Learning
3. Reinforcement — learn via
trial-and-error rewards

» Each paradigm branches into
many methods (linear regression,
k-means, Q-learning)

» Common thread: define a goal
(loss or reward), optimize it
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L From Al = ML

Where the Paradigms Help in Materials Science

Paradigm Example materials
tasks
Supervised Predict band gap, elas-

tic modulus, phase label

Unsupervised

Cluster high-entropy al-
loys; reduce descrip-
tor space with PCA,;
anomaly detection in
synthesis logs

Reinforcement

Active-learning loop
in  self-driving  lab;
Bayesian  optimization
of alloy composition

Supervised Unsupervised  Reinforcement
Learning Learning Learning

Property prediction dominates our immediate needs, so we now focus on
the supervised learning paradigm.
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Core Vocabulary

Anatomy of a Dataset

> A dataset = collection of samples (rows)
» Each sample records one material /formula
» Many columns make up the features (descriptors)

» One column is label (target property)

© df_12_struct.head()
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1 254049 25677782 50954081, somse nosm  omses osereer ooz -
2 10.0.01Fo (17600807 1 70538070 R——— osssteo ossssss cosasas corezts
o Bomorzeomssasiod ooy someor v oseow2 - oz -
o e o st e osues o arower P— oanzzs -

Example snippet: structure, mass density, ordering parameters, packing fraction, bulk modulus
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Core Vocabulary

Features & Labels in Materials Science

Features (Descriptors)

» Numerical representation of
composition/structure

» Examples: average
electronegativity, packing fraction,
atomic structure descriptor,
atomic-site symmetry

Labels (Targets)

» Property we wish to predict:
Continuous — band gap [eV],
formation energy [eV/atom]
Categorical — metal vs insulator,
phase (hcp/fec)

element properties

feature vector

band gap=2,1eV
(label)

Descriptor (feature) vector feeds model; label guides learning
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Core Vocabulary

Model, Parameters & Loss

» Model y = fy(x) — mathematical function
mapping features to label

» Parameters 0 — weights the algorithm

must learn features [BEICINICI AN predicted
. ———= 0 label
» Loss L(y,y) — quantifies “how wrong”
predictions are: X y
Regression — MSE
Classification — cross-entropy fe(x)
» Learning = find 8" = argming >_ L(y, y) Black-box ML model

Feature scaling: Standardize descriptors so weight magnitudes are comparable
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Core Vocabulary

Model, Parameters & Loss

» Model y = fy(x) — mathematical function
mapping features to label

» Parameters 6 — weights the algorithm
must learn
» Loss L(y,y) — quantifies “how wrong”
predictions are:
Regression — MSE
Classification — cross-entropy wy
> Learning = find 6* = argming >_ L(y,y) Wo

Optimizing parameters on loss landscape

Feature scaling: Standardize descriptors so weight magnitudes are comparable
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Core Vocabulary

Train - Validation - Test Split

» Training set — model sees labels; fits
weights

» Validation set — monitors generalization;
tunes hyper-parameters, triggers early
stopping

» Test set — sealed until final evaluation;
unbiased estimate of real-world
performance

> Typical split: 70 / 15 / 15 % (flexible)

Golden Rule

Never use the test set during model development.
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Supervised, Unsupervised, Reinforcement Learning

Three Ways to Learn from Data

» Supervised learning: learn mapping
x +— y from labelled data

) Supervised Unsupervised  Reinforcement
» Unsupervised learning : find Learning Learning Learning

structure/patterns in unlabelled data

» Reinforcement learning: learn a
policy by maximizing cumulative
reward through interaction

» Common pattern: define objective =
optimize it
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Supervised, Unsupervised, Reinforcement Learning

Supervised Learning in Materials Science

» Inputs: composition / structure descriptors

» Targets: continuous properties (band gap,
elastic modulus) or categories (metal vs
insulator)

» Typical algorithms: linear & kernel
regression, random forests, neural networks

» Enables high-throughput property
prediction and rapid screening

Features Parameters Predicted
X labels
y
ML model
fo(x)
T— Compute
loss

Supervised learning workflow: Descriptor vector — model —
predicted property
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Supervised, Unsupervised, Reinforcement Learning

Unsupervised Learning — When Labels Are Scarce

» Goal: discover latent structure.

» Tasks: cluster unknown alloys, reduce high-dimensional descriptor space
via PCA, anomaly detection in synthesis logs.

» Methods: k-means, DBSCAN, autoencoders, PCA, t-SNE.
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Supervised, Unsupervised, Reinforcement Learning

Reinforcement Learning — When Labels Are Scarce

» Goal: choose actions to maximize Reinforcement
reward. Learning

» Tasks: active-learning loop in
self-driving lab, Bayesian
optimization of composition,
autonomous furnace tuning.

» Methods: Q-learning, policy
gradients, GP-based Bayesian
optimization.
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Supervised, Unsupervised, Reinforcement Learning

Which Paradigm Fits Your Problem?

» Do you have labels?

» Yes = Supervised.
» No = Unsupervised.

» Need sequential decisions and real-time

feedback? = Reinforcement.
yes no Need feedback

» Example walk-through: ¢ l

» Predict elastic modulus — Supervised

» Cluster 10 000 unknown materials into
categories (metal, insulator, oxides, etc.)
— Unsupervised

» Decide next sample or processing step in
autonomous lab — RL

Take-away

We'll focus on supervised learning next, since it underpins most
materials-property prediction tasks.
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Regression vs. Classification

Two Supervised Question Types

Regression Classification
» Predict a continuous value » Predict a category label
» Example: band gap (eV), elastic » Example: metal vs insulator,
modulus (GPa) crystal system (hcp/fcc)
> Loss: MSE / MAE » Loss: cross—entropy
Regression Classification
best-fit line ® o o °
o
0o)®e
° decision
boundary
o
(0] o o
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Loss Function

Why We Need a Loss

» Model outputs a prediction y; reality
provides the true value y

» We need a numerical measure of “how
wrong” each prediction is

» Loss function L(y, ) quantifies this
error

» Training = adjust parameters to
minimize > L(y, y)

29/46
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Loss Function

Mean-Squared Error (MSE)

» Standard loss for regression tasks
) _ 1N 512
» Formula: MSE = § > .2, (yvi — )
» Squared term penalizes large errors more strongly

» Differentiable = gradient-based optimization works smoothly

30/46
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Loss Function

Loss Functions Overview

» Mean—-Squared Error (MSE)
MSE = %Zf\’:l(yf — $1)? - Squared term penalizes large errors more
strongly

» Mean Absolute Error (MAE) — also for regression and more robust to
outliers
MAE = § 31, Iy - 9l

» Root Mean—Squared Error (RMSE)
RMSE =/ 3L, (i — 9i)?

» Binary Cross Entropy — for classification
BCE = § 31, [yilog §i + (1 — yi) log (1 — 91)]

» Choice of loss depends on task and distribution of targets

Key Take-away

Pick a loss that matches your prediction type; for regression we'll typically use
MSE.
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Linear Regression

Linear Model & Assumptions

» Linear regression is a type of
supervised machine-learning algorithm

» Maps the data points with most
optimized linear functions

» Hypothesis: y = 01 4 0»x

» Assumptions:
> Relationship between input and
output is linear
» Errors are independent and
identically distributed

» Goal: find 61,6, that minimize MSE.

Y

Observed value

Y
Random error £
Y
P

Predicted value

Intercept e1 {
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Linear Regression

Loss Function in Linear Regression

» Recall MSE loss
L=L3V @ —w)

» Calculates the average of the squared
errors between the predicted values
and the actual values

» Purpose is to determine optimal values
91, 6, for the model }7 =01 + Orx

» How do we find 61, 6,7

» This is done by minimizing the loss
function, for example by gradient
descent
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Linear Regression

Visualizing MSE: Geometric Intuition

» Each residual ri = y; — §; shown as vertical bar
» Squaring = shaded area of each residual square

» Best-fit line minimizes total shaded area

Visualization
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Nanostructured Materials

Linear Regression

Finding Model Parameters (Closed-form vs. Gradient Descent)
Closed-form (Normal equation):
0=(x"x)"x"y

» Good for small to moderate dimensionality of features

» Requires matrix inversion

Gradient Descent (iterative):

0 =0 — «a - “gradient update”

» Scales to large datasets; underlies neural networks

» Converges if learning rate a chosen properly

Let's compute the gradient updates specifically for a simple example.
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Linear Regression

Computing the Gradient Update

» Consider a simple linear regression model: y = 61 + 6,x

» Let's compute the gradient update.
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Linear Regression

Computing the Gradient Update
» We derived the following gradient updates:

» Gradient update for intercept:
01 =01 — a205%2) — 0, — a2 SN (9 — vi)

» Gradient update for slope:
92 :92—05%3;02) :Hg—a%ZﬁV(f/,-—y;)-x;

A
Initial /
Weight
P~ <+«—— Gradient
D
N
n
-
[7)]
o}
O
Dg;'ézts':e Minimum Cost
»

—_—
Weight (0)
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Linear Regression

Beyond Linear Regression

Simple

Linear y = bo —+ b1X1

Regression

Multiple

Linear y = bO + b1X1 + b2X2 “+ ...+ ann

Regression

Polynomial

Linear y = bo + b1X1 -+ ble? + ...+ anf

Regression

38/46
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Model Evaluation

Regression Metrics

Metric

Formula

Intuition

MSE % SN —yi)?

Penalizes large errors (squared)

MAE 5 SNy — yikl

More robust to outliers

R2 1 — SSyes/SStot

Fraction of variance explained (1=perfect)

with

ssres - Z:N(}A/l - YI')z

SStot = M (7 — yi)?

> Always pair R? with an absolute error metric.

» Choose metric relevant to scientific tolerances.
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Model Evaluation

Predicted vs Actual Plot (Parity Plot)

» Quick visual sanity check: perfect model lies on 45° line.
> Systematic bias shows as slope # 1.

» Colour/size points by uncertainty or density.

Parity Plot

Predicted Band Gap (eV)

True Band Gap (eV)
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Model Evaluation

Residual Analysis

» Plot residual y — y vs predicted y.

» Patterns reveal issues:
» Funnel shape = non-constant variance.
» Curved trend = missing non-linear term.

» Suggest remedies: log-transform target, add polynomial features, or
change model.

Residuals vs. Predicted
.

Residual (True — Predicted)
°

05 10 15 2.0 2.5 30 35 4.0
Predicted Band Gap (eV)
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Model Evaluation

Residual Analysis

» Plot residual y — y vs predicted y.

» Patterns reveal issues:
» Funnel shape = non-constant variance.
» Curved trend = missing non-linear term.

» Suggest remedies: log-transform target, add polynomial features, or
change model.

Error Distribution
T

Count

Prediction Error (eV)
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L Under- & Over-fitting

Model Capacity Spectrum

> Under-fit (high bias): model too simple, misses trend.
» Good fit: captures true signal, generalizes well.

> Over-fit (high variance): model too complex, memorizes noise.

X
X
@ @
. =2
o a
X
Size Size Size
90+ 61)( 90+ 61)( *92x2 60* 01)( +62X2 +93)(3+94)(4
High Bias Low Bias, Low Variance High Variance
(Underfitting) (Goodfitting) (Overfitting) [aYal
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L Under- & Over-fitting

Model Capacity Spectrum

» Under-fit (high bias): model too simple, misses trend.

> Good fit: captures true signal, generalizes well.

» Over-fit (high variance): model too complex, memorizes noise.

Under-fitting

(too simple to
explain the variance)

Appropirate-fitting

Over-fitting

(forcefitting--too
good to be true) HG
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L Under- & Over-fitting

Avoiding Overfitting: Lasso and Ridge Regularisation

Lasso (L1)
. 15 WN(p 2 N
» Loss: L= N Ei (y,- —y,‘) + )\Zi ‘0,‘|.
» Lasso encourages sparsity by bringing some coefficients to exactly zero.

» Can set some weights exactly zero = implicit feature selection.

Ridge (L2)
> Loss: L= 2SN —yi)2+ AN 0?
» Shrinks all weights smoothly toward zero.

» Encourages the model to have smaller and more balanced weights.

Elastic net (L14L2)
> Loss: L= L3N —yi)2+ AN 0+ AN 02
» Combines both lasso and ridge regularization.

Need to optimize additional hyperparameter \.



Nanostructured Materials

Key Takeaways

One Slide Summary

» Core vocabulary: dataset, feature,

label, model, loss

» ML paradigms: supervised,
unsupervised, reinforcement

» Regression vs. classification; MSE
loss; linear-regression baseline

» Model evaluation: train/val/test,
metrics, residuals

» Diagnose under-/over-fit; Ridge
& Lasso for regularization

Supervised Unsupervised  Reinforcement

Learning Learning Learning
o8
B
Y2 |0
oo
oo g
o0 marsmas Regression Classification
) best-fit i °
womow L | o UK .o (e
0)®e
° decision
boundary
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